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I. PROBLEM O F  ELECTRICAL AND THERMAL CONDUCTION 

The transport of electricity or of heat by metals is assumed to 
be effected principally through the agency of free electrons. 
These, under normal conditions of the metal, are assumed to be 
in statistical equilibrium, for which a distribution function fo 
exists, such that 

. 

l o  (5, 9, dE dq d r  

gives the number of electrons per unit volume the velocity 
components of which lie between f and f + d t ,  7 and 7 + dq, f and 
j- + df. It follows that n, the total number of electrons per unit 
volume, is given by the expression: 

(€, 9, r )  d x ;  

in this expression d k  is an element of the velocity-space equal 
to d(dqdf, and the integration is to be extended over all values 
of the velocities. It follows also that, under normal conditions, 
the excess number of electrons passing (in the positive direction 
over the number passing in the negative direction) per second 
through a unit plane perpendicular to the direction corresponding 
with the &component is 

Under the influence of a difference of potential or of a tempera- 
ture gradient in the metal, the distribution function is altered, 
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f ( t ,  q,  p) replacingfO(t, q ,  p), giving rise to a stream of electrons 
corresponding with the direction of the impressed force or of the 
temperature gradient. In  the case of a difference of elect’rical 
potential applied in the direction of 5,  the current perunit cross- 
section is 

where e is the charge on the electron; correspondingly, in the case 
of a temperature gradient, the quantity of kinetic energy trans- 
ferred per second per unit cross-section is 

where m is the mass of the electron and v 2  = 5 2  + q2 + p 2 .  

In  the absence of collisions, the electrons which a t  a given t i xe  
are in the element of volume dS of the metal and the reprcsenta- 
tive points of which in the velocity-space lie in dh,  after the lapse 
of time dt ,  are in an element of volume dS’ of the metal, equal to 
dS, and their representative points in the velocity-space lie in 
d ~ ’ ,  equal to d x .  The electrons of the group considered have 
initially the same components of velocity, or with only infinitesi- 
mal variations, since their representative points lie in dx. Under 
the influence of a force giving rise to an  acceleration X in the 
direction of the z-axis (i.e., the direction of i ) ,  operating during a 
time dt, t i s  altered to t + Xclt, x to x + [d t ,  y to y + qdt, x to x 
+ pdt; Since, in the absence of 
collisions, the number of electrons (reckoned per unit volume) 
characterized initizlly by t ,  q,  p, z, y, x ,  t is equal to the number 
characterized, after the lapse of time dt,  by the altered quantities 
just given, it follows necessarily that: 

and p remain unchanged. 

f (t, 7, 6, 5, Y, 2, t )  = f ( E  + Xdt ,  7, I ,  Y + 0 dt ,  2 + 5 dt ,  2 + 6 d k  t + d t )  (3) 

During the passage of a group of electrons from (dS, dh )  to 
(dS’, A’), however, the number in the two groups does not in 
general remain the same on account of collisions. If b is the 
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number of electrons joining the group per second as a result of 
collisions and a the number lezving it, then 

f (C, 7, I ,  r ,  Y, z ,  t )  + ( b  - a) dt  = f  (E-i-Xdt, 9, I ,  2 + Edt ,  v + s d t ,  z + I d t ,  t + d t )  (38) 

Since the right-hand side of equation (3s) may be replaced by: 

3.f 3.f bf 3.f 
a €  a x  b.2 b t  f ( E ,  q, I ,  2, y, 2, t )  + - Xdt 4- a f  4 at + q dt + - r dt + - dt  

and since the functionfis assumed constant in y, z ,  t for a steady- 
state condition arising from a force in the x-direction, it follows 
that:  

In  order to simplify the cslculation of (6 - a), the atoms are 
considered as rigid, elastic spheres; further, the atoms are con- 
sidered as immovable on account of their relatively large masses, 
and the mutual collisions between electrons are ignored. The 
number of collisions between electrons of the group (d>.) and 
metal atoms, such thzt the line of centers lies within a solid angle 
dw (equal to sin8 d8 d y )  is first to be considered. 6 is the angle 
between the line of centers (at the moment of impact) and the 
direction of the velocity of the electron (figure I)  ; p is the dihedral 
angle between the plane POX (formed by the x-axis and a line 
drawn from the origin in the direction of the velocity) and the 
plane PO& (formed by two lines drawn from the origin of coordi- 
nates, one in the direction of the line of canters at impact, the 
other in the direction of the velocity). The velocity component 
in the direction of the line of centers at impact is u cos 8. Elec- 
trons colliding in the manner specified must lie a t  the moment of 
impact on a surface-element of a sphere, the radius R of which 
is equal to the sum of the effective radii of atom and electron. 
This surface-element is R2 sin8 d8 dp. All electrons of the group 
having positions a t  a given moment within a distance equal to 
u cos 8 collide in the manner specified during the ensuing unit of 
time. The volume therefore containing electrons colliding during 
a second in the specified manner is R2v cos9 sin9 d8 dp and since 
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there are f(5, 7, l ) d x  electrons per unit volume in the group, the 
number of such collisions per second by electrons of thegroup 
with one metal atom is 

If there are n metal atoms per unit volume, the total number of 
collisions per unit volume per second by electrons specified by 

FIG. 1. GEOMETRICAL RELATIONSHIPS AT IMPACT 

l ,  7, {such that the angle between the line of centers at impact and 
the direction of the velocity lies within the solid angle dw is 

n R 2  v j (E, 7, c) dh * cos8 s ind  d8 dp ( 5 )  

The velocity-point of the deflected electron may be found by a 
consideration of the fact that the velocity-component parallel to 
the direction of the line of centers at impact is reversed, while 
that perpendicular to it persists. Reference to the simplified, 



THEORY O F  METALLIC COXDUCTIOK 143 

two-dimensional diagram of figure 2 (see p. 144) shows the 
nature of the results : 

L l + L 2 + L 3 = ' I  2 

L 2 + L 3  = $ ' = a  

whence 

57 
L 2 = g S 7 J - -  2 

CY = T / 2  - 9 

cy 4- g = ir/2 + (9 - 8 )  

From a comparison of equations (5b) and (Sa), it follows that:  

(6) 
E' E - + cosg ccsff = - - cosg ccsb  
U V 

or, 
E' = t: - 2 v cosg cos79 

BY analogy, 
7J' = 7J - 2 u cosh cos79 

5' = 5 - 2 v ccsi cos8 

(6a) 

The angles g, h, i are those between the direction of the line of 
centers at impact and the three rectangular axes. The deductions 
just made reveal the fact that the electrons of group ( d i ) ,  upon 
collision with metal atoms, become members of other groups 
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(A’) all having the same total energy as the group ( d k ) ,  the new 
components of velocity being related to the old ones by equations 
(6a), ( 7 ) ,  (8). This fact in turn leads to a method of calculating 
the number of reverse collisions by electrons of groups (dx ’ )  such 
that after collision their representative points lie with those of 
the undeflected electrons of group ( d k ) .  It follows from expres- 

‘\ 
\ 

\ 

FIQ. 2. DIAGRAM OF VELOCITIES 

sion ( 5 )  that the number of such reverse collisions by electrons 
from a group (dk’ )  such that the angle between the line of centers 
at impact and the direction of the velocity 0’ is 8‘ is 

n R2 f (E’  TJ‘ r’) d h’ v’ ~ 0 8 8 ’  sin$’ d8’ dp (9) 

(u’ = U; 8’ = 8;  dA‘ = dh) 

where the values of [’, v’, l’ depend upon the orientation of the 
line of centers a t  impact. Hence, 

b - a = TZ R* u rr if (g’, q’, l’) - f ( E ,  7, r ) ]  cos8 sin8 d8 dp (10) 
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and from equation (4), 

A solution of the equation, in the form 

f = f o  + .E x ( V I  (12) 

is to be tried, where f o  is the normal distribution function and 
~ ( u )  an unknown function of the velocity alone. Substitution in 
(11) gives : 

On the right-hand side of the preceding equationf,, is usedinstead 
of the more exactfo + ~ x ( v ) .  This procedure is permissible as an 
approximation, on account of the form of the expression and of the 
fact that  fo is large in comparison with its perturbation. Obvi- 
ously this approximation would be useless on the left-hand side 
of the equation. Substitution of the value of ( E ’  - i )  from equa- 
tion (6a) gives: 

Bfo  afo 
a €  a x  

- 2 n R2 o2 x (o) Jy12r cosg cosZ8 sin0 d o  dp = X - + - (14) 

The line of centers at impact (PR.. .Q in figure 1) and the 
axis Ox are not necessarily in the same plane; g is the angle 
between these two lines. Ox is inclined to the line OP (the 
direction of v) at an angle p.  The line of centers is inclined to OP 
at an  angle 9. cp is the dihedral angle between the plane (PR . . . Q 
and OP) and the plane of (Ox and OF) ; whence, 

cosg = cosp cos8 + sinp sin+ cosp (15) 

Substitution in equation (14) gives : 

r r / z  r 2a 
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The result of integration with respect to cp is 

integration with respect to 6 gives: 

The uaknown function x (Y) is thus found to be: 

The essayed solution 
1 

in which 1 has been set equal to ~ 

T n R2' 
in which x is assumed to depend upon Y alone is thus found to  
be satisfactory since t itself disappears from the right-hand side 
of equation (Ha)  upon performing the indicated operations, 

Hence, the distribution function describing the system is 

and by equation (2), the quantity of eIectricityJ transported per 
second per unit cross-section is : 

and by equation (1) 
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The quantity of heat W transported per second per unit cross- 
section is, similarly, 

11. APPLICATION O F  CLASSICAL STATISTICS TO THE PROBLEM O F  
CONDUCTION 

I n  so far as the assumptions and approximations of the last 
section, which constitutes essentially the treatment of Lorentz, 
are adequate to describe the phenomenon of conduction in 
metals, there remains only the choice of a normaldistribution 
functionfo and its application to formulas (21) and (21a) in order 
to obtain a final solution of the problem. The classical distribu- 
tion function of Maxwell and Boltzmann x a s  used by Lorentz 
and is easily obtained by commencing with the relationship 
accredited to Boltzmann connecting the entropy of a system 
with its thermodynamic probability. The latter quantity is 
defined as the number of microscopic complexions in a given 
collection all of which correspond to the same macroscopic state 
of the system. A given microscopic complexion is specified by 
means of the position coordinates and corresponding components 
of momenta of each of the molecules of the system. Varying 
numbers of microscopic complexions thus correspond with various 
macroscopic states, there being the maximum number of micro- 
scopic complexions in the equilibrium macroscopic state. The 
various microscopic complexions corresponding with a given 
macroscopic state differ by permutations of the individual mole- 
cules, the individuality of the molecules being insignificant as 
regards the macroscopic state. Boltzmann’s relationship is 

s = k log w (22) 

where S is the entropy, k a proportionality constant to be identi- 
fied later, and W the thermodynamic probability corresponding 
with the state of the system giving rise to the entropy S.  In  
order to specify the positions and momenta of the molecules i t  is 
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convenient to conceive a space of six dimensions, along three 
of the axes of which the space coordinates of the molecules are 
represented, and along the other three axes of which the coordi- 
nates of momenta are represented. This six-dimensional space 
(the phase-space) is divided into cells of equal magnitude; the 
magnitude of a cell is small in comparison with the entire space 
representing the system. A macroscopic state of a system is thus 
specified by Arl rnolecules having representative points lying in 
cell 1, ATz molecules in cell 2,  . . . . ArS molecules in cell s. 
The number of ways in which this distribution can be realized by 
a system containing N molecules is : 

(23) 
N !  w = 

N 1  ! AJZ ! . . . . A;, !’ 

Z N , = N  (24) 
8 

The total energy E is accordingly: 

E = Z ea AT8 
8 

where el, e p , .  . . es are the energies characteristic of the cells 1, 2,  
. . . s, and the summations are taken so as to include all of the cells 
of the phase-space. If the distribution is an equilibrium one, 
then it gives rise to the maximum entropy; or 

1 
IC - ss = s10gw = 0 (29) 

for any arbitrary, small variation in the equilibrium. If the 
system contains a constant number of molecules and a constant 
energy, it follows that 

6 E = Z 6.6 N, = 0 (27) , 

as subsidiary conditions on the arbitrary variation in the equilib- 
rium. By an application of Stirling’s formula, 

log z ! = z log z - 2, 



THEORY O F  METALLIC CONDUCTION 

it followq from equation (23) that: 

149 

6 log W = - 2: (log N ,  + 1) 6 N ,  = 0 (29) 

The subsidiary conditions, 6N = 0 and 6E = 0, rob two of the 
6”s of their independence. Thus any variation, subject to the 
imposed conditions, involves a t  least three cells: 

* 

6 N =  6 N l +  6N2+ 6N3 = O  (31) 

6 E =  ei6Ni + €26N2+ e a 6  N3 = 0 (32) 

These equations may be solved by finding quantities (Y and p by 
which equations (31) and (32) respectively are to be multiplied, 
such that upon addition of the three equations the coefficients of 
6N1 and 6Nz vanish. Then 

and since 

where A is a constant. 
If cells 2, 3, and s are now chosen for the arbitrary variation, 
with the same multipliers a and p, the coefficients of 6Nz and 
6N3 vanish, and hence that of 6N,; or 

(33) N - A e-@c‘  
a -  

The constants (Y and p can be determined from a formal compari- 
son of thermodynamic quantities with the equations themselves : 
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1 - 8 S - a s N  - @ s E = O  
k 

If partial differential coefficients, at constant volume, are formed, 
it follows that: 

From the definition of the change in entropy of a given quantity 
of matter: 

dE + p dV 
T dS = (36) 

where T is the absolute temperature and p the pressure. 
follows that 

It 

1 
@ =  - 

kT (37) 

The coefficient may be found by considering the 

entropy as a function of $e. three independent variables E,  V ,  N .  

dS = (g)v,N dE + (") dV + ("I> dN (38) 
" E,N d N  E , V  

By means of (36), 

($)E,  V d N  
1 P dS = - dE + -  dV + T T (39) 
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or 

where j- is the chemical potential, Le., the “partial molal” free 
energy (reckoned per molecule). Had the partial differential 
coefficients been taken at constant pressure instead of a t  con- 
stant volume, the significance of both QI and ,B would have been 
altered, but altered in a manner such as not to affect equation 
( 3 3 ) ;  for the system of equations (33) determines the maximum 
entropy, and with constant LV, E ,  and V’ the entropy, as well as 
pressure, etc., is fixed. 

The following equations serve for the determination of the 
constants A and k :  

where p,, p,, p ,  are components of momentum corresponding with 
the energy E. If the energy is wholly kinetic, 

1 
,mu2 = B (44) 

m v dv = de (45) 

Also 

d p ,  d p ,  dy, = m3 dE d? d r  = m3 v2 dv sin8 d 8  dQ (47) 

where 3, cp are angles determining the direction of the velocity in 
spherical polar coordinates. 
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Whence : 

i m e - h e n  de = ( k  P ' ) n + l  r (n + 1) 

N 
( 2  ?r m k 29312 

N = ( 2  T m k T ) 3 / 2  A ;  A = 

The heat capacity of the gas, 

Whence by comparison with experiment, 

where R is the molar gas constant. 
On the basis of classical statistics, therefore, it follows that the 
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number of molecules having components of momentum lying 
between p ,  and p ,  + dp,, p ,  and p ,  + dp,, p ,  and p ,  + dps is: 

where N is the total number of molecules. 
given velocity components is : 

The number having 

and the number having a velocity of magnitude v is 

The distribution function f o  appropriate for application in 
equations (21) and (2la) is thus: 

fo = A ’ e - - b *  

where 

and 

m 
2 k T  

b = -  

Equations (21) and (21a) for the quantities of electricity and 
of heat, respectively, transferred through unit cross-section per 
second are: 
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Whence 

2‘2 

3 
E2 may be replaced by -, d[ dq d{ by 4 7~ v 2  dv, and v 2  by q, 

whence 

if n is an integer. Whence 

(59) 
4 n e l  A ’ X  1 b A ’  

= -(- 3 b - 2bz - - b x  +$E) 

The coefficient of electrical conductivity U, under the condition 

of constant temperature throughout the conductor (2 = 0, 
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= O), is easily obtained from eqqation (59). The acceleration 
bX 

eE 
m 

X is given by - where E is the electric intensity. Whence, the 

value obtained by Lorentz : 

J 4 7 r e Z l A ’  
E 3 m b  g = - = - -  

The coefficient of thermal conductivity in a conductor in which 
there is no flow of electricity can be obtained from equation (59a) 
by utilizing the relationship J = 0 from equation (59). 

whence 

2 A ’ X  1 bA‘  2 A ‘ b b  
b2 b3 b x  b4 b x  
- - -- = (62) 

Substitution by means of this equation in equation (59a) gives 

A’ n 2 k T 5/2 
F = p ( y )  

(64) 
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If the coefficient of thermal conductivity K is defined by the 
equation 

K -  
d X  

the value obtained by Lorentz foliows from comparison: 

(66) 

and 

K_ = 2 (!)’ T = 0.165 X IO-” T. 

The ratio has the value 4.8 x 10-11 for a temperature of 291°K. 

Experimental values for the ratio ; for common metals show a 

proportionality with T,  and a t  a temperature of 291°K have 
approximately the value 7 x 10-11. In the application of 
formulas such as (60) or (67), the quantity 1, which is of the nature 
of a mean free path, is to be treated as an adjustable constant. 
For silver, as an example, if the number of free electrons is assumed 
to be equal to  the number of metal atoms, the experimental 
value of u (1/1600 in c.g.s. units) in equation (60) leads to a value 
of I equal to 4.7 x 10-7 em. The assumption just made regard- 
ing the number of free electrons leads, on the basis of classical 
statistics, to a heat capacity contribution to the metal of % Nk,  
and even though the heat capacity of the electron-gas of the metal 
cannot be measured, theoretical evidence concerning the heat 
capacity of metals points towards a very inconsequential con- 
tribution from the electrons. Thus, in accordance with the 
theory presented, it is necessary, in order to explain satisfactorily 
the experimental values of U ,  t o  assume that the number of free 
electrons is approximately equal to the number of metal atoms. 
This assumption in turn leads to an absurdly large contribution 
to the heat capacity. 

K 
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111. APPLICATION O F  THE N-EW STATISTICS TO THE PROBLEM O F  

COXDUCTION 

In  the new systems of statistics, as developed either by Bose 
and Einstein or by Fermi, the fundamental postulate of Eoltz- 
inann relating entropy to thermodynamic probability is retained, 
but the method of calculating the thermodynamic probability 
is altered. As in the classical statistics, a phase-space is con- 
ceived for describing a system and is divided into cells of equal 
magnitude h f ,  where h is Planck’s constant andf  the number of 
degrees of freedom of the molecule. I n  the development of 
classical statistics as given in section I1 of this article, the magni- 
tude of the cells was not specified; nor was it necessary for the 
application there made. It would have been necessary there, how- 
ever, had a numerical calculation of the entropy been attempted, 
but such an  attempted calculation would have revealed an 
inconsistency in the calculation of the thermodynamic probability, 
forcing an  “ad hoc” revision but not affecting the form of the 
distribution function. Besides removing the inconsistency just 
mentioned, the new systems of statistics, and especially the system 
developed by Fermi, appear to have a deeper physical basis than 
does the classical statistics. The statistics of Bose and Einstein 
and of Fermi both lead to essentially the same distribution func- 
tion as classical statistics for gases at high temperatures and low 
densities. There are marked departures however in the case 
of gases under conditions such that the ratio of the temperature 

to the number of molecules per cubic centimeter ; is compara- 

tively low. A gas in such a state is said to be degenerate. The 
conception of the free electrons in a metal as a gas and the 
assumption that the number of free electrons is equal to the 
number of metal atoms necessitate an extremely large value for 
n, as compared with gases under ordinary conditions of tempera- 
ture and pressure ; even for comparatively high temperatures, 

the ratio ; is so low that the electron-gas is in a highly degenerate 

state. Hence it is to be expected that the new statistics in its 

T 

T 
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application to the problem of conduction should lead to results 
very different from those of the classical theory. 

According to the new statistics, a given state of a system (cor- 
responding with a region of the phase-space containing As cells, 
all representing the same energy but different positions) is 
characterized by 

p o  A s cells being empty 

pl A s cells containing one molecule 

pr A s cells containing r molecules 

B p ,  = 1 

The number of ways in which the given distribution can be 
realized, it being assumed that cells but not molecules have 
“identity,” is: 

(69) 

and WA. is interpreted as the thermodynamic probability cor- 
responding with the selected region of the phase-space. Ry 
Stirling’s formula : 

A s !  
(PO A S )  ! (pi A S) ! . . . . . (pr A 8) ! w A s  = 

The logarithm of the probability per cell in the A s-region is 
therefore 

- Z pr log pr, 
r 

and the entropy of the entire system is 

s = k log JV = - k B s p: log p; 
8 r  
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The summation with respect to T ,  according to the statistics of 
Bose and Einstein, runs from T = 0 to T = co and, according to the 
statistics of Fermi, from T = 0 to T = 1, (Le., a cell is either empty 
or contains one molecule). The summation with respect to s 
includes all cells of the phase-space of the system, compatible 
with its energy and volume. The quantities p :  etc. are to be 
interpreted as the probability that the sth cell contains T mole- 
cules, etc., in the sense that 2p;r gives the average number of 

molecules in the 5 th  cell, Z p f f ' r  the average number in the 

(s + l ) t h  cell, etc. 
I n  order to find the equilibrium distribution of a given system, 

it is necessary to render the entropy S a maximum, subject to the 
conditions of a constant number of molecules and constant 
energy. In  accordance with the preceding notation the total 
number of molecules and the total energy are respectively: 

r 

N = ZN, = Z Z p ; r  
S s r  

where el, c2, . . . e8 are the energies characteristic of the cells 1 , 2 .  . . 
s. The entropy is rendered a maximum by setting 6s equal to 
zero for any, arbitrary, small variation of the quantities govern- 
ing the distribution; Le., 

- ; 6 s = - 6 log w = Z Z (log p:  + 1) 6 p ;  = 0 (74) 
8 7  

Likewise, in order that N and E be constants during the varia- 
tion: 

6 N  = L: SAr,  = Z Z r 6 p ;  = 0 

6 E  = L : c , 6 A T , = Z L : e , r 6 p : = 0  

8 s r  

8 8 T  

(75) 

(76) 

and further, since 
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z z a p ; = o  
s r  

(77) 

With three subsidiary equations restricting the general variation, 
three 81)’s are robbed of their independence, and hence any 
variation, subject to the imposed conditions, involves a t  least 
four p’s. By an application of an  exactly similar method as that 
used for the corresponding problem in the classical statistics; 
i.e., by finding quantities a, p, y by which equations (75), (76), 
(77) respectively are to be multiplied, such that upon addition of 
the four equations, (74) (75) (76) (77), the coefficients of three of 
the four 6p’s vanish, it  follows that, since the fourth 6p cannot 
be zero, its coefficient must vanish, or 

(78) p. = e- 1 - yS - (a + B r 

The constant y (requiring a subscript) can be determined at  once 
from the relationship: 

In  the statistics of Bose and Einstein, T = 0, 1, . . , . 0 0 ,  whence, 

(81) e - 1 -  ‘ 8 = 1 - e  - (a + B 

and in the statistics of Fermi, T = 0, 1, whence, 

The constants a, p ,  by reference to equations (41) and (37) and to 
their mode of introduction in equations (75) and (76) are recog- 

1 and cT. For a pure gas, the free energy F nized respectively as - - kT 
(F  = N:) is thus 

F = E + p V - T S =  - N k T a  (83) 
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The number of molecules in any cell s is, according to the 
statistics of Bose and Einstein, found from equations (72) ,  (78) 
and (81) to be: 

and, according to the statistics of Fermi, from equations (72), 
(78) and (82): 

The total number of molecules and the total energy are respec- 
tively : 

From equations (71) and (78), it follows that the entropy is: 

S = - k I: Z p: [ -  Q T - 6 e, r 5 log (1 e - c a + 8 e 8 ’ ) l  (88) 

where, in the cases of alternation in sign, the upper sign is to be 
read for the statistics of Bose and Einstein and the lower one for 
the statistics of Fermi. 

s r  

whence 

and since 
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it follows that 

1 (90) S = - - F + E -  - + k x log (1 - + e - ( a + B e s )  

T T  8 

By reference to the thermodynamic definition of F ,  it follows 
that 

'2 = k 2 log (1 e - a - 0 6 8  ) (91) T 8 

It is immediately evident from equation (85) that, if the gas 
is in a state such that 

1 
ea = - >> 1, 

A 

the dishibution function of Bose and Einstein, or of Fermi, 
becomes essentially A e-' es 

( A  2 e - B f 8  = 2 N~ = AT) (92) 

and is therefore as regards form in accord with the classical 
theory. Furthermore, with the condition that ea >> 1, 

and by comparison with the experimental equation p V  = RT, k is 

identified with -) R being the molar gas constant. 

by replacing the sum by the corresponding integral: 

R 
N 

The constant A (  = e-a) can be determined from equation (92) 

Z A e - ~ e s  8 = A J . . . J e - B e  d ~ z d ~ v d ~ a d ~ d t i d z  hS (94) 

The magnitude of a cell in the phase-space is thus assumed to  be 
sufficiently small that for the purpose of integration it may be 
identified with dp,dp,dp,dxdydz. The integrations extend over 
all values of p,, p,, p, consistent with the energy and over all 

* 
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values of x, y, z consistent with the volume. 
etc., 

As in equations (44) 

S S S d x d y d z  = S d V  = V 

d p ,  d p ,  d p .  = m3 d 5 d 7 d r = m3 vz d v sin8 d 9  dQ = m312 6 de sin8 ds dp 

whence from equation (94), 

it being legitimate to extend the upper limit to 
the form of the function. 

on account of 
It follows that 

1 
A 

The condition of non-degeneracy (i.e., e" = - >> l), in which 

case the form of the new distribution function does not differ 
essentially from the classical, is therefore that 

For helium gas at 273°K and one atmosphere pressure 

6.06 X 1023 
A S 4 X 1 0 - 6 < < l ( n =  22,400 1 

m =  
6.06 x 1023 

while for the free electrons in silver at 300°K 

A S 0.5 X 104 >> 1 

WJ = 9.02 X 10-8 
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Accordingly, the free energy of a non-degenerate gas by 
equation (83) is: 

[$ (2 T m ha k TI3/’ 1 FA= - N k T a = N k T l o g A  = N k T l o g  (98) 

N k T  v=- 
P 

whence, the entropy of a non-degenerate gas is: 

(99) 1 (2 T m k TI3I2 $I2 V 
N ha 

s = - c$)p = N k l o g  [ 
This theoretical value for the entropy of a monatomic gas cor- 
responds closely with experimental results (based on the third law 
of thermodynamics) and has been obtained by a variety of 
theoretical methods. 

In the case of a degenerate gas (i.e., one for which e - a  = A 
> > 1) equation (94) can no longer be used for the evaluation of 
A ,  but rather the exact equation (86) from which equation (94) 
was evolved: 

where u is written for t, and the minus sign corresponding with kT 
the assumption of Bose and Einstein is omitted, its significance 
becoming indefinite for very great values of A. The correspond- 
ing integrals for E and p V  are: 

(101) 
$I2 T V k T (m k T ) 3 / 2  

ha E =  

A 
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Integration of equation (102) by parts gives: 

2 
3 h3 

Z 5 I 2  T V k T (m k TI3I2 
(103) 3 

p V = - .  

A 

The generalized integral corresponding with equations (loo), 
(IOI), etc., is: 

where p = 1/2, 3/2 etc., a,nd the gamma function of ( p  + 1) 
dividing the expression serves only in the definition of U,; e.g., 

. ut r (: + 1). 
Z5l2  H V (m k T)3/2 

h3 
N =  

Sommerfeld has shown that the asymptotic value of U ,  as A 4 
co (i.e., A = A , )  is: 

whence, to first approximations, for very large values of A :  

Equation (106) gives the value of log A ,  or more properly log 
A o ,  in terms of measurable quantities: 

3 n 2 4  h2 
log A D  = (z) 2-1 (. = :) (108) 
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Substitution of this value in equation (107) gives for the value 
of the energy of a highly-degenerate gas: 

3 n 5/3 2 ir V h2 

E‘=(G) 7%- 

Sommerfeld has shown that to a second approximation : 

and 

(109) 

(110) 

(111) 

Eo is the so-called “Nullpunktsenergie” (independent of 2‘) ; the 
corresponding “Nullpunktsdruck” is 

(112) 
2 E o  4 n h “  - P o = - - - -  3 V 15m f27’3 

The “Nullpunktsentropie” is directly obtained from equation 
(89) : 

whence 

From equations (loo), (101), (1041, (105), 



THEORY O F  METALLIC CONDUCTION 167 

Sa = 0 

In  the development of the statistics of (rotationless) mona- 
tomic gases just given, the statistical weight (or a priori  probability) 
of each infinitesimal region of the phase-space is postulated to be 
equal to the extension in phase-space divided by the constant h3, 
1.e.) 

d p ,  d p ,  d p ,  dx dy dz 
h3 

This corresponds with the assignment of a statistical weight equal 
to unity for each mechanically possible stationary state of a 
(“non-degenerat e”) quantized sys tem. 

Current theories regarding the electron assign to it a spin. 
This consideration requires that its statistical weight be twice 
that of a rotationless mass-point, Le., 

G 
- d p ,  d p ,  d p ,  dx dy dz, (G = 2) 
ha 

Thus, in the application of the preceding formulas to electrons, in 

every instance - is replaced by -. The following list of 1 G* 
h h 

altered and extended formulas is given for convenience in the 
subsequent deductions .1 

1 
1 In the case of a non-degenerate gas, it is evident tha t  f a  = - bxomes z e U + l  1 

essentially A e -  U, as in the Lorentz application of the classical statistics. 
Sommerfeld’s derivation of the LoFente formulas, Z. Physik 47, 23, 26 (1928). 

See 
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To a second approximation: 

Uo log A (116) 

(117) ' 

(118) 

From equation ( l l l ) ,  with the proper insertion of G, 

Whence the heat capacity of the electron-gas is 

a quantity which is negligibly small for metals at ordinary 
tempera tures. 

With the Fermi distribution function [fo of equation (114)], 
equations (21) and (21a) for the electric current per unit cross- 
section and the quantity of heat transported per second per unit 
cross-section, become respectively : 

where 

dn = 4 G (T)' v= dv = B v2 dv (123) 
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Whence 

3 dV d X  

W = - ,-f dfo u4 du + J v 6 f 0  d v ]  (124a) 
6 a v  a x  

rn 212 By a change of variable, u = - 
2 ZC T’ the 

equations become : 

Integration by parts of the first terms on the right gives: 

These integrals correspond with the generalized integral of equa- 
tion (115) with p having the values 0, l, 2. 

For the case of electrical conductivity in a conductor at constant 
temperat we, 
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e E  
m 

and with the acceleration X given by -, where E is the electric 

intensity, it follows that the coefficient of electricaI conductivity is: 

J 2 e 2 l k T  
E 3 m2 B Uo (125) fJ=-=-.- 

Substitution from equations (123), (116), and (119), the first 
approximation for log A being used, (G = 2), gives: 

(129) 

In  the case of a thermal conductor in which there is no elec- 
trical current: 

and 

Whence, by substitution in (127a) : 

From equations (117) and (118) 
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Whence, 

Substitutions corresponding with equation (123) for B and with 
(119), (120) for U1 and U z ,  give for the coefficient of thermal 
conductivity : 

Fromequations (129) and (135), it follows that the Wiedemann- 

Frana ratio %, according to the Fermi statistics, has the value 

c(kyT,  or 7.1 x 10 -11 for a temperature of 291°K. This value 
3 e  
is in remarkably close agreement with the mean value of the 
ratio for the twelve common metals Al, Ag, Au, Cd, Cu, Fe, Ni, 
Pb, Pt, Sn, Zn; the individual experimental values however 
depart appreciably from this mean value. 

In  spite of the closely agreeing value for the Wiedemann-Franz 
ratio, a glance at formula (129) for the coefficient of electrical 
conductivity reveals the fact that it does not give the proper tem- 
perature coefficient of the conductivity,-at least if I is assumed 
independent of the temperature (i.e., independent of the average 
velocity, U). Sommerfeld has shown that the same formulas 
(129) (135) are obtained if, throughout the calculation, I is 
considered as a function of the velocity. According to the wave- 
theory of electrons, developed by Houston and Bloch, the quantity 
Z is a function of temperature, the atoms of the metal becoming 
more effective in electron-scattering the higher the temperature. 
Houston has shown theoretically by this method of reasoning that 
the conductivity of a perfect crystal varies inversely as the 
temperature over a considerable range of temperature. 
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